Game Mechanics Overview

The Emissary of Tep enables the player to explore a detailed tropical island, make conversation with the natives, and, by collecting pertinent evidence, guide the islanders in their sacrificial rites, thereby ending a deadly supernatural battle.

At the start of each day, the evil followers of Rametep kill a villager. The character then has all day to collect evidence against the perpetrators, and persuade the good villagers to sacrifice one of their evil brethren at the nightly meeting (for the followers of Rametep will do their best to trick the good villagers into sacrificing one of their own).

The player must successfully accomplish two goals in order to defeat the game:

1) Determine which four of the twenty-one villagers has sided with the evil God Rametep. This is accomplished by collecting incriminating evidence and making astute observations.

2) Persuade the good villagers to throw their errant brethren, one by one, into the volcano, thereby delivering the island of Tep from the clutches of Rametep. This is accomplished by conversing with the villagers.

The player is able to move about the island, examine objects in the environment, and make friendly or hostile gestures toward the natives via a text parser action interface (see User Interface for more details). Collecting and filing evidence against characters is initiated from this prompt. The menu based help file can also be executed from this prompt; this feature explains the game mechanics to the player.

When in the same location as a villager, the player is able to initiate conversation from the action parser. Utilizing the conversation text parser, the player may show evidence he or she has collected to the villager in order to sway his or her opinion, as well as enact more miscellaneous conversation. Once the conversation ends, control is returned to the action parser.

At each village meeting, every villager votes to sacrifice the villager they are most suspicious of. The votes are tallied, and the chosen villager is cast into the volcano.

If a night passes and no villagers are lost, the game has been won. If all the good villagers have been killed off, the player is treated to a Bloody Horrible Death at the hands of the remaining followers of Rametep.

Game Engine Specifications

· Single-player game

· Text only display

· Text-parser based interface

· Randomly chosen conspirators

· Randomly chosen daily murders and clues

· Player can affect the Villagers' suspicions

· The players actions affect their credibility with the villagers

· Villagers have a personal dynamic ranking of suspects

· Conspirators will give the player misleading information

Game Technical Requirements

· No graphics in the game

· No music or sound effects in the game

· Players can save and load up to 10 games for future play

· Player has only eight game world hours to investigate the current murder

· Player can collect, organize and examine evidence

· Simple conversation with villagers

· In-game help system
Game shipped on CD or multiple Floppy discs

· Hardware Related Functionality

Controls

Input for “The Emissary of Tep” is limited to the keyboard only. No voice recognition functionality will be included for input. Commands will be typed in at a command line the input will be parsed and text that fit a command signature will be dealt with appropriately.

Two command interpreters using a shared text parser allow the player to interact with his or her surroundings; InterpretAction() (which is the main game loop) and InterpretTalk() (which governs conversation mode). Each will display their own command prompt. The following is a list of commands to be used in the game.
The main game loop command interpreter InterpretAction() governs the following:

Movement:
go <direction/room>

Alias: move, walk
leave

Description: allows character to leave a building
Evidence Collection:
put <object> in general evidence

Alias: take <object>, grab, swipe.
Description: enters a clue into a generic evidence list, either from conversation (a verbal clue) the surroundings (an observation or object), or from the generic evidence list.
put <object> in evidence against <character>
Description: enters a clue that the player is currently examining or from the generic evidence list into the players evidence list against a specific villager
look <object>

Alias: examine, see, inspect, check, view

Description: gives the player a more detailed description of an object or person.
Help File:

A help file will be presented in the form of a journal left by the previous Emissary of Tep, Sir Wesley of Williston, 100 years prior to the arrival of the player. It will be written to assist the player in methods of solving murders, interacting with villagers and moving around the island while not breaking the atmosphere of the game.
help

Alias: journal, Wesley

Description: Brings up the journal of Sir Wesley of Williston, the help file.
Game Management

The save command allows the player to dynamically save their game at any time to one slot of memory.

Save

The load command allows the player to load a saved game from memory.

Load

The Quit command returns the player to the title screen, where they may quit to the OS or start or load games.

Quit

Quick Conversation:
These allow the player to make quick comments to characters without going into talk mode.

greet <character>

Alias: hello, hi
Description: generic greeting to a character -- does not initiate a conversation. This is a friendly gesture.
insult <character>

Alias: taunt
Description: generic insult to a character -- does not initiate a conversation. This is an unfriendly gesture.
The command interpreter for conversation InterpretTalk() governs the following.

Conversation Engine:
The talk command is required for the player to enter talk mode. In talk mode the player may use the other commands in this section.

talk <character>

Alias: speak

Description: initiates a conversation, required for other conversation commands
compliment
Description: communicate a generic compliment. Player must be in talk mode.
insult
Description: communicate a generic insult. Player must be in talk mode.
ask <character> about <object>
Description: asks the villager about an object. Player must be in talk mode.
show <character> evidence against <character>
Description: present your evidence against a suspect to the character you are currently speaking with. Player must be in talk mode.
hello

Description: say hello to the character; is a friendly gesture
goodbye

Description: exit the conversation. Exits from talk mode.
End Turn:

The end turn command allows the player to finish with the exploration portion of the turn and move on to the voting/sacrifice portion of the turn.
 done

Alias: rest, wait

Description: Fast-forwards to the end of day sacrifice.

Software Related Functionality

Load and Save

During the game the player will be allowed to save their game or load a previous game. To save a game the player must enter in the save command at the command prompt, the program will ask the player to enter the name of their saved game, save the game and then ask the player whether they would like to quit. To load a game, the player must enter in the load command at the command prompt. The program will then display a list of saved games and allow the player to select one by pressing the number associated with that save slot. The player will be limited to ten save slots.

Text Parsing

ParseText() will be a function to break apart an input string to tokens for the command interpreters. This function may make use of the C run time library function strtok or may be custom made. The parsed text will be stored in an array or similar data structure for the calling function to search.

Basic Algorithm of Villager Suspicion and Trust

At the start of a new game:

At beginning of the game, for each character, randomly generate a suspicion number (from 0 – 100) for every other character.

For each character, randomly generated a Trust Factor (1 – 10) in the player.

Actions for the start of a new day:

Each day, the player may compliment a given villager 1-3 times (randomly generated at the beginning of the day). Each compliment increases that character’s Trust Factor by 1; i.e. the character responds positively. Each time the player compliments a given villager over the 1-3 limit, that villager’s Trust Factor goes down by 1; i.e. he or she reacts negatively.

For every statue of Rametep that crumbles, every character’s Trust Factor increases by 3.

Each time the wrong character is sacrificed, every character’s Trust Factor decreases by 3.

Actions during the game day:

Each time the player briefly insults, a villager (or insults them in conversation), the villager’s Trust Factor goes down by 1.

Showing Evidence to the Characters

Two kinds of evidence

· true clues

· red herrings

Whenever the player accuses villager X and shows evidence to villager Y, the change in villager Y’s suspicion of villager X is defined by:

(# True clues * trust factor) – (# red herrings * 3)

Any redundant Showing of the same evidence results in no change in suspicion numbers; however, each new piece of evidence the character has yet to see on a given day will be evaluated normally, excluding the redundant evidence.

Data Flow

Initialization

· Open database files for asynchronous read and write

· Create temporary file for data retrieval

Menu-Screen
After initialization the program will enter its main title screen. The title screen will be encapsulated in a function called titleScreen() that displays the game name “The Emissary of Tep”, the development company “Monkey18 Productions” and three menu options, “(N)ew Game, (L)oad Game or (Q)uit”. The user will be able to enter the single letter in parenthesis for each option to choose that option. The “New Game” option will start a new game by calling the NewGame() function. The “Load Game” option will go to the load game screen by calling the LoadGame() function. The “Quit” option will go to the quit screen by invoking the QuitGame() function.

 Pre-Game Initialization / New Game
· Seed randomizer

· Determine servants of Rametep

· Set character information

· Initialize variables

· Display new game sequences

Begin Turn

· Determine a murder victim

· Distribute clues based on murder

· Determine initial character positions

· Display new day information

· Display murdered/missing character information

· Determine if victory conditions have been met

Play Loop

· Process Keyboard Input

· Interpret Action Commands

· Interpret Talk Commands

· Update character information

· Update location display

· Update player information

End Turn

· Display town meeting

· Give character speeches

· Vote on sacrifice / throw sacrifice in volcano

· Update Statue information

· Display update statue information

· Display character reactions

Post-Game Cleanup

· Clean up memory

· Close all data files

· Delete temporary file

Basic Data Structures

The following is a listing of the mk18_tep.h header file containing basic data structures that will be used in the game. Interspersed with the header file are additional descriptions of different segments of the header file included for the purposes of this report. This text is shown in boldface to differentiate it from the header file and to increase readability.

/**

*** ORIGINAL AUTHOR INFORMATION ****

*

* Original Author(s):

* Gino Constantini <mastergcc@aol.com>

* Jon Olson <nfin8zero@thinkingcube.com>

* Matt Phillips <mphillips@digipen.edu>

*

* Location:

* Digipen Institute of Technology, Redmond Campus.

*

*** CREATION INFORMATION ****

*

* Create Date:

* November 6, 2000

*

* Revision History: (older entries toward the bottom)

* 2001-01-16 :: jolson :: Made some corrections and added:

 - compliment counter

 - list of evidence shown to a

 character; destroyed at

 beginning of each turn/day

 renamed file to tep_types.h from

 mk18_tep.h

* 2000-11-19 :: jolson :: Fixed some bugs that were in the code,

* added some missing datatypes

* 2000-11-18 :: jolson :: Fixed some bugs that were in the code

* 2000-11-16 :: jolson :: Changed 'Leaf' to 'Node', added more

* functionality

* 2000-11-15 :: jolson :: Added more known functionality

* 2000-11-11 :: jolson :: Added more of the decided functionality

* 2000-11-08 :: jolson :: Added more structures and typedefs

* 2000-11-07 :: jolson :: Added a bunch of the main structures

* of the file

*

*** PROGRAM INFORMATION ****

*

* Name : tep_types.h

*

* Implementation: <none> (datatypes only)

*

* Objective:

* The header file for the Tep game.

*

* Methods:

* declarations and stuffs

*

* Neccessary archives:

* "constants.h" custom header file setting all the times

* that things will take.

*

* Environments:

* command line

*

* Requirements of the Hardware:

* none as yet

*

* Restrictions:

* none as yet

*

* Modes of Use:

* included in all code to be used with tep

*

* Compiler:

* Microsoft Visual C++ 6, Service Pack 2

*

* Bibliography:

* Nate Cleveland Brain (Wetware)

* Gino Constantini Brain (Wetware)

* Jon Olson Brain (Wetware)

* Matt Phillips Brain (Wetware)

* André LâMothe Text Parsing: How To Guide (intranet)

* Michael Abrash Zen Programming (Book)

*

**/

#pragma once

/* do this only once */

#if !defined(__TEP_HEADER__)

#define __TEP_HEADER__ 0x04000406 /* 1.1.6 */

/* Tree 1, File 1, File Version 6 */

/*

Here is how the the bit pattern is broken down:

0xTPFFFMVV

 T + Ph (6 bits, 64) :: tree number

 Pl + FFF + Mh (16 bits, 65536) :: file ID number

 Ml + VV (10 bits, 1024) :: version of the file

ex (0x12345678 equates to file 4.36117.632 or Tree 4, File 36117, v632)

*/

#include "tep_constants.h"

/* some hard coded strings. (not many) */

/****

$$%o,

$ BASIC TYPEDEFS CONDITIONALLY DONE $$$$$$$$$$$$$$$

$$$?'

****/

#if !defined(__UCHAR_DEFINED__)

#define __UCHAR_DEFINED__

typedef unsigned char uChar;

#endif

#if !defined(__PCHAR_DEFINED__)

#define __PCHAR_DEFINED__

typedef unsigned char *pChar;

#endif

#if !defined(__PBYTE_DEFINED__)

#define __PBYTE_DEFINED__

typedef unsigned char *pByte;

#endif

#if !defined(__UINT_DEFINED__)

#define __UINT_DEFINED__

typedef unsigned short UINT;

#endif

#if !defined(__USHORT_DEFINED__)

#define __USHORT_DEFINED__

typedef unsigned short USHORT;

#endif

#if !defined(__UWORD_DEFINED__)

#define __UWORD_DEFINED__

typedef unsigned short UWORD;

#endif

#if !defined(__ULONG_DEFINED__)

#define __ULONG_DEFINED__

typedef unsigned long ULONG;

#endif

#if !defined(__DWORD_DEFINED__)

#define __DWORD_DEFINED__

typedef unsigned long DWORD;

#endif

#if !defined(__BOOL_DEFINED__)

#define __BOOL_DEFINED__

typedef char BOOL;

#endif

#if !defined(__bool_DEFINED__)

#define __bool_DEFINED__

typedef char bool;

#endif

#if !defined(__TRUE_DEFINED__)

#define __TRUE_DEFINED__

#define TRUE 1

#endif

#if !defined(__FALSE_DEFINED__)

#define __FALSE_DEFINED__

#define FALSE 0

#endif

#if !defined(__FAILED_DEFINED__)

#define __FAILED_DEFINED__

#define FAILED -1

#endif

#if !defined(__true_DEFINED__)

#define __true_DEFINED__

#define true 1

#endif

#if !defined(__false_DEFINED__)

#define __false_DEFINED__

#define false 0

#endif

#if !defined(__failed_DEFINED__)

#define __failed_DEFINED__

#define failed -1

#endif

#if !defined(__PVOID_DEFINED__)

#define __PVOID_DEFINED__

typedef void *PVOID;

#endif

One of the most important data types in the program is the TepID. A TepID is a unique 32-bit number that contains information regarding an objects type and subcategories within that type. Bits 31-26 are used to define the primary type of an objects data. The primary type is a broad classification like 'Room' or 'Character.' Bits 25-16 define a secondary type, such as a type of clue or a part of speech. Bits 15-0 are a serial number to distinguish objects within the same subcategory.

Along with the TepID we have defined two list structs. One is unidirectional while the other is bi-directional. The lists of TepIDs are widely used throughout the program to group game objects by room, character, evidence list, etc.

The commands allowed data type, TepCmds, is a simple bit flag similar to the TepID. It identifies what commands are available to use on whatever object it is associated with.
/****

$$%o,

$ TEXTUAL SUBST $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$$$?'

****/

/* OBJECT TYPE MASTER ID NUMBERS ******************

 Bit pattern:

 maintype 31 - 26 bits (6)

 secondary 25 - 16 bits (10)

 unique 15 - 0 bits (16)

TOTAL 32 bits

**/

#define TEP_ROOM 0x04000000

#define TEP_CHARACTER 0x08000000

#define TEP_DEATH 0x10000000

#define TEP_CLUE 0x20000000

#define TEP_COMMAND 0x40000000

#define TEP_TALK 0x80000000

/* OBJECT TYPE SECONDARY CATEGORIES **************/

#define CLUE_PERPITEM 0x00010000

#define CLUE_PERPLOCA 0x00020000

#define CLUE_PERPVERBALSIGHT 0x00030000

#define CLUE_PERPVERBALSOUND 0x00040000

#define CLUE_FROMDEATHONPERP 0x00050000

#define CLUE_FROMDEATHATLOCA 0x00060000

#define CLUE_TYPEDEATHONPERP 0x00070000

#define CLUE_TYPEDEATHATLOCA 0x00080000

#define TALK_GENINSULT 0x00010000

#define TALK_GENCOMPLIAMENT 0x00020000

#define TALK_HELLO 0x00030000

#define TALK_GOODBYE 0x00040000

#define TALK_ANSQUERY 0x00050000

#define TALK_ANSEVIDENCEYES 0x00060000

#define TALK_ANSEVIDENCENO 0x00070000

#define TALK_CLUESLOCATION 0x00080000

#define TALK_CLUESCHARACTER 0x00090000

#define TALK_INIT 0x000A0000

#define TALK_GENFAILURE 0x000B0000

/****

$$%o,

$ STRUCTS & OBJECT HANDLES $$$$$$$$$$$$$$$$$$$$$$$$

$$$?'

****/

/* ID NUMBER **************************************

 All values stored in this format are unique.

**/

typedef ULONG TepID;

/* POINTER TO ID NUMBER **************************/

typedef TepID *pTepID;

/* BIDIRECTIONAL ID NUMBER NODE *******************

 A structure for storage of ID numbers

**/

typedef struct _TepIDBiNode

{

 struct _TepIDBiNode *PREV; /* pointer to previous id */

 TepID NODE; /* current id */

 struct _TepIDBiNode *NEXT; /* pointer to next id */

} TepIDBiNode; /* struct _TepIDBiNode */

/* POINTER TO BIDIRECTIONAL ID NODE **************/

typedef TepIDBiNode *pTepIDBiNode;

/* UNIDIRECTIONAL ID NUMBER NODE ******************

 A structure for storage of ID numbers

**/

typedef struct _TepIDUnNode

{

 TepID NODE; /* current id */

 struct _TepIDBiNode *NEXT; /* pointer to next id */

} TepIDUnNode; /* struct _TepIDUnNode */

/* POINTER TO UNIDIRECTIONAL ID NODE *************/

typedef TepIDUnNode *pTepIDUnNode;

/* COMMANDS ALLOWED *******************************

 Bit level list of commands allowed

**/

typedef ULONG TepCmds;

/* POINTER TO COMMANDS ALLOWED STRUCT *************

 Pointer to bit level list of commands

**/

typedef TepCmds *pTepCmds;

The Data String Structs are used to store string data and associate the data with a specific TepID. These are useful for holding data such as a character's name, clue descriptions, or even a list of keywords for the user to interact with an object.
/*** DATA STRING STRUCTS ***

***/

/* DATA STRUCT ************************************

 A struct for storage of data. This structure

 is to be used primarily in file database data

 strings.

**/

typedef struct _TepDataString

{

 TepID id;

 pChar data;

} TepDataString;

/* POINTER TO DATA STRUCT ************************/

typedef TepDataString *pTepDataString;

/* BIDIRECTIONAL DATA NODE STRUCT *****************

 Bidectional linked list for data structs

**/

typedef struct _TepDataStringBiNode

{

 struct _TepDataStringBiNode *PREV; /* pointer to previous DataString */

 TepDataString NODE; /* current DataString */

 struct _TepDataStringBiNode *NEXT; /* pointer to next DataString */

} TepDataStringBiNode; /* struct _TepDataStringBiNode */

/* POINTER TO BIDIRECTIONAL DATA NODE STRUCT *****/

typedef TepDataStringBiNode *pTepDataStringBiNode;

/* UNIDIRECTIONAL DATA NODE STRUCT ****************

 Bidectional linked list for data structs

**/

typedef struct _TepDataStringUnNode

{

 TepDataString NODE; /* current DataString */

 struct _TepDataStringUnNode *NEXT; /* pointer to next DataString */

} TepDataStringUnNode; /* struct _TepDataStringUnNode */

/* POINTER TO BIDIRECTIONAL DATA NODE STRUCT *****/

typedef TepDataStringUnNode *pTepDataStringUnNode;

The Conversation Structs are simple structures for storing dialogue. Two TepIDs are used. The first identifies the type of dialogue stored in the string. The second identifies the object or character that the dialogue is describing.
/*** CONVERSATION STRUCTS **

***/

/* CONVERSATION ITEM ******************************

 A struct for storage of a single conversation

 piece.

**/

typedef struct _TepConvData

{

 TepID id; /* conversation id */

 TepID attachedto; /* ID of object attached to */

 pChar details; /* null-termed string of its data */

} TepConvData; /* struct _TepConvData */

/* POINTER TO CONVERSATION ITEM ******************/

typedef TepConvData *pTepConvData;

/* BIDIRECTIONAL CONVERSATION NODE STRUCT *********

 Bidectional linked list for conversation

 structs

**/

typedef struct _TepConvDataBiNode

{

 struct _TepConvDataBiNode *PREV; /* pointer to previous ConvData */

 TepConvData NODE; /* current ConvData */

 struct _TepConvDataBiNode *NEXT; /* pointer to next ConvData */

} TepConvDataBiNode; /* struct _TepConvDataBiNode */

/* POINTER TO BIDIRECTIONAL CONV NODE STRUCT *****/

typedef TepConvDataBiNode *pTepConvDataBiNode;

/* UNIDIRECTIONAL CONVERSATION NODE STRUCT ********

 Bidectional linked list for conversation

 structs

**/

typedef struct _TepConvDataUnNode

{

 TepConvData NODE; /* current ConvData */

 struct _TepConvDataUnNode *NEXT; /* pointer to next ConvData */

} TepConvDataUnNode; /* struct _TepConvDataUnNode */

/* POINTER TO BIDIRECTIONAL CONV NODE STRUCT *****/

typedef TepConvDataUnNode *pTepConvDataUnNode;

The Room Structs are data structures that store all data associated with a room. The TepRoom structure stores all of a rooms permanent data where as the TepDynRoom structure store a rooms dynamic data.

TepRoom contains a TepID, a string to store the rooms name (could be more than one name), a string to store the rooms description text, a TepCmds bit field, a list of exits, and a list of objects and buildings within the room. The data in TepRoom should remain constant throughout the game.

TepDynRoom contains all of a room’s dynamic data such as the people and murder clues currently present in a room. Not all rooms will have a dynamic structure associated with them for every turn.
/*** ROOM STRUCTS **

***/

/* ROOM STRUCTURE *********************************

 A struct for storage of rooms

**/

typedef struct _TepRoom

{

 TepID id; /* value 0 is an undefined value. These are to be unique values. */

 pChar name; /* pointer to null-termed string */

 pChar desc; /* pointer to object's description data */

 pTepCmds cmd; /* pointer to allowed commands of this object. If the object of command help ids, the value is 0 */

 pTepIDUnNode rooms; /* pointer to linked list of id's for connected rooms */

 pTepIDUnNode objs; /* pointer to linked list of id's for objects in room */

} TepRoom; /* struct _TepRoom */

/* POINTER TO AN ROOM STRUCTURE ******************/

typedef TepRoom *pTepRoom;

/* BIDIRECTIONAL ROOM NODE STRUCTURE **************

 A struct for storage of rooms.

**/

typedef struct _TepRoomBiNode

{

 struct _TepRoomBiNode *PREV; /* pointer to the previous node */

 TepRoom NODE; /* current object data */

 struct _TepRoomBiNode *NEXT; /* pointer to the next node */

} TepRoomBiNode; /* struct _TepRoomBiNode */

/* POINTER TO BIDIRECTIONAL ROOM NODE ************/

typedef TepRoomBiNode *pTepRoomBiNode;

/* UNIDIRECTIONAL ROOM NODE STRUCTURE *************

 A struct for storage of rooms.

**/

typedef struct _TepRoomUnNode

{

 TepRoom NODE; /* current node data */

 struct _TepRoomUnNode *NEXT; /* pointer to the next node */

} TepRoomUnNode; /* struct _TepRoomUnNode */

/* POINTER TO BIDIRECTIONAL ROOM NODE ************/

typedef TepRoomUnNode *pTepRoomUnNode;

/* DYNAMIC ROOM DATA ******************************

 A struct for storage of all current dynamic map

 data.

**/

typedef struct _TepDynRoom

{

 TepID asRoomID; /* the id number of the room this object is associated with */

 pTepRoom asRoom; /* pointer to all data associated room */

 pTepIDUnNode people; /* pointer to linked list of id's for characters in room */

 pTepIDUnNode objs; /* pointer to linked list of id's for objects in room */

} TepDynRoom; /* struct _TepDynRoom */

/* POINTER TO DYNAMIC ROOM DATA ******************/

typedef TepDynRoom *pTepDynRoom;

/* DYNAMIC ROOM BIDIRECTIONAL STRUCTURE ***********

 A struct for storage of dynamic room data

**/

typedef struct _TepDynRoomBiNode

{

 struct _TepDynRoomBiNode *PREV; /* pointer to previous dynamic room data struct */

 TepDynRoom NODE; /* current dynamic data struct */

 struct _TepDynRoomBiNode *NEXT; /* pointer to next dynamic room data struct */

} TepDynRoomBiNode; /* struct _TepDynRoomBiNode */

/* POINTER TO DYNAMIC ROOM BIDIRECTIONAL STRUCT **/

typedef TepDynRoomBiNode *pTepDynRoomBiNode;

/* DYNAMIC ROOM UNIDIRECTIONAL STRUCTURE **********

 A struct for storage of dynamic room data

**/

typedef struct _TepDynRoomUnNode

{

 TepDynRoom NODE; /* current dynamic data struct */

 struct _TepDynRoomUnNode *NEXT; /* pointer to next dynamic room data struct */

} TepDynRoomUnNode; /* struct _TepDynRoomUnNode */

/* POINTER TO DYNAMIC ROOM UNIDIRECTIONAL STRUCT */

typedef TepDynRoomUnNode *pTepDynRoomUnNode;

The Character Structs store all data about the NPCs in the game. TepChar stores a characters TepID, their name, a string containing the characters description, a pointer to the characters conversation data, the list of other characters in the order that they would like to see sacrificed, a nybble that determines how much they like or dislike the player, a bit field that stores their generic personality, and a list of locations that the character frequents.
/*** CHARACTER STRUCTS ***

***/

/* DOES CHARACTER LIKE PLAYER? ********************

 A nibble (16 values) illustrating the level

 of fondness for the player a character has.

**/

typedef uChar TepCharLikePlayer;

/* POINTER TO "LIKE PLAYER" ***********************

 Pointer to "does character like player?"

**/

typedef TepCharLikePlayer *pTepCharLikePlayer;

/* PERSONALITY MATRIX *****************************

 Bit field personality matrix

**/

typedef ULONG TepCharPersonality;

/* POINTER TO COMMANDS ALLOWED STRUCT *************

 Pointer to bit level personality matrix

**/

typedef TepCharPersonality *pTepCharPersonality;

/* CHARACTER STRUCT *******************************

 A struct for storage of all character data,

 except the player's.

**/

typedef struct _TepChar

{

 TepID id; /* unique id number of this character */

 pChar name; /* pointer to a null-termed string containing the character's name */

 pChar desc; /* pointer to a null-termed string containing the character's description */

 pTepConvDataUnNode conv; /* pointer to charcter's conversation matrix */

 pTepIDBiNode whacklist; /* pointer to an bidirectional id list containing the character's whack data */

 pTepIDUnNode knownData; /* pointer to an unidirectional id list containing the data (clues, deaths and such) that the character knows about. This is used, so that the player cannot show a give character the same thing over and over to change their whack list */

 pTepCharLikePlayer like; /* nibble containing levels of emotion toward the player */

 pTepCharPersonality ident; /* bit field containing flags for personality traits */

 pTepIDUnNode locations; /* list of possible locations to find the character */

 uChar complimentCounter; /* preset to a random number in each character at beginning of day, (between 1-3) */

} TepChar; /* struct _TepChar */

/* POINTER TO CHARACTER STRUCT *******************/

typedef TepChar *pTepChar;

/* BIDIRECTIONAL CHARACTER NODE STRUCTURE *********

 A struct for storage of character data.

**/

typedef struct _TepCharBiNode

{

 struct _TepCharBiNode *PREV; /* pointer to the previous node */

 TepChar NODE; /* current node data */

 struct _TepCharBiNode *NEXT; /* pointer to the next node */

} TepCharBiNode; /* struct _TepCharBiNode */

/* POINTER TO BIDIRECTIONAL CHARACTER NODE *******/

typedef TepCharBiNode *pTepCharBiNode;

/* UNIDIRECTIONAL CHARACTER NODE STRUCTURE ********

 A struct for storage of character data.

**/

typedef struct _TepCharUnNode

{

 TepChar NODE; /* current node data */

 struct _TepCharUnNode *NEXT; /* pointer to the next node */

} TepCharUnNode; /* struct _TepCharUnNode */

/* POINTER TO UNIDIRECTIONAL CHARACTER NODE ******/

typedef TepCharUnNode *pTepCharUnNode;

/*** CLUES ***

***/

/* CLUE STRUCT ************************************

 A struct for storage of a single clue.

**/

typedef struct _TepClueData

{

 TepID id; /* conversation id */

 TepID attachedto; /* ID of object attached to */

 pChar details; /* null-termed string of its data */

} TepClueData; /* struct _TepClueData */

/* POINTER TO CONVERSATION ITEM ******************/

typedef TepClueData *pTepClueData;

/* BIDIRECTIONAL CONVERSATION NODE STRUCT *********

 Bidectional linked list for clue structs

**/

typedef struct _TepClueDataBiNode

{

 struct _TepClueDataBiNode *PREV; /* pointer to previous ClueData */

 TepClueData NODE; /* current ClueData */

 struct _TepClueDataBiNode *NEXT; /* pointer to next ClueData */

} TepClueDataBiNode; /* struct _TepClueDataBiNode */

/* POINTER TO BIDIRECTIONAL CONV NODE STRUCT *****/

typedef TepClueDataBiNode *pTepClueDataBiNode;

/* UNIDIRECTIONAL CONVERSATION NODE STRUCT ********

 Unidirectional linked list for conversation

 structs

**/

typedef struct _TepClueDataUnNode

{

 TepClueData NODE; /* current ClueData */

 struct _TepClueDataUnNode *NEXT; /* pointer to next ClueData */

} TepClueDataUnNode; /* struct _TepClueDataUnNode */

/* POINTER TO BIDIRECTIONAL CONV NODE STRUCT *****/

typedef TepClueDataUnNode *pTepClueDataUnNode;

The Player Structs define several varied structures.

TepPlayerEvidence is used to store the clues a player has collected and sort them by the categories that the player has chosen. Two TepIDs are used to this.

TepPlayer stores data about the current player. It simply stores the players name and the lists of the evidence for the current turn and all past turns.

TepCurMurder stores the TepID of the current days murder and pointers to the character data of the victim and murderer.

TepCurState stores the number of turns the player has left in the day, a list of the characters that are serving Rametep, a list of all the characters that are still living, and a list of all the murders that have happened to prevent duplication. It also contains pointers to the TepPlayer struct, the TepCurMurder struct, and the game's static and dynamic map data.
/*** PLAYER STRUCT ***

***/

/* EVIDENCE ***************************************

 A struct for storage of evidence data

**/

typedef struct _TepPlayerEvidence

{

 TepID clue; /* clue id this is for */

 TepID attachedTo; /* id num of object that evidence is attached to */

} TepPlayerEvidence; /* struct _TepPlayerEvidence */

/* POINTER TO EVIDENCE ***************************/

typedef TepPlayerEvidence *pTepPlayerEvidence;

/* BIDIRECTIONAL LIST OF EVIDENCE *****************

 Bidirectional linked list for evidence data.

**/

typedef struct _TepPlayerEvidenceBiNode

{

 struct _TepPlayerEvidenceBiNode *PREV; /* pointer to previous node */

 TepPlayerEvidence NODE; /* current node */

 struct _TepPlayerEvidenceBiNode *NEXT; /* pointer to next node */

} TepPlayerEvidenceBiNode; /* struct _TepPlayerEvidenceBiNode */

/* POINTER TO BIDIRECTIONAL LIST OF EVIDENCE *****/

typedef TepPlayerEvidenceBiNode *pTepPlayerEvidenceBiNode;

/* UNIDIRECTIONAL LIST OF EVIDENCE ****************

 Unidirectional linked list for evidence data.

**/

typedef struct _TepPlayerEvidenceUnNode

{

 TepPlayerEvidence NODE; /* current node */

 struct _TepPlayerEvidenceUnNode *NEXT; /* pointer to next node */

} TepPlayerEvidenceUnNode; /* struct _TepPlayerEvidenceUnNode */

/* POINTER TO UNIDIRECTIONAL LIST OF EVIDENCE ****/

typedef TepPlayerEvidenceUnNode *pTepPlayerEvidenceUnNode;

/* PLAYER ***

 A struct for storage of the player's

 information.

**/

typedef struct _TepPlayer

{

 pChar name; /* player's name */

 pTepPlayerEvidenceUnNode evidenceAgainst; /* pointer to list of current evidence against a character */

 pTepPlayerEvidenceUnNode evidenceGeneric; /* pointer to list of current evidence that has yet to be placed against someone */

 pTepPlayerEvidenceUnNode oldEvidenceAgainst; /* pointer to list of past evidence against a character */

 pTepPlayerEvidenceUnNode oldEvidenceGeneric; /* pointer to list of past evidence that has yet to be placed against someone */

} TepPlayer; /* struct _TepPlayer */

/* POINTER TO PLAYER *****************************/

typedef TepPlayer *pTepPlayer;

/* CURRENT MURDER *********************************

 A struct for storage of the current murder

**/

typedef struct _TepCurMurder

{

 pTepChar victim; /* pointer to the victim */

 pTepChar murderer; /* pointer to the murderer */

 TepID death; /* pointer to a death construct */

} TepCurMurder; /* struct _TepCurMurder */

/* POINTER TO CURRENT MURDER *********************/

typedef TepCurMurder *pTepCurMurder;

/* GAME STATE *************************************

 A structure devoted to storing the current

 game's state. This is where most functions

 will get their data from.

**/

typedef struct _TepCurState

{

 USHORT turnsLeft; /* the number of turns left in current day */

 pTepRoom currentRoom; /* pointer to current room player is in */

 pTepCharUnNode ramatepList; /* pointer to a unidirectional list of the Servants of Ramatep */

 pTepIDUnNode pastDeaths; /* pointer to a unidirectional list of used murders */

 pTepCharUnNode liveList; /* pointer to a unidirectional list of live characters */

 pTepPlayer player; /* pointer to the player's data */

 pTepCurMurder currentMurder; /* pointer to the current murder and its affiliated data */

 pTepDynRoomBiNode mapLite; /* pointer to a bidirectional list of dynamic map content */

 pTepRoomUnNode FullMap; /* pointer to full version of entire map */

} TepCurState; /* struct _TepCurState */

/* POINTER TO GAME STATE *************************/

typedef TepCurState *pTepCurState;

#endif

/* EOF */

Hardware Requirements

Minimum System Requirements

· PC Compatible computer with a 486 processor

· 16 MB RAM

· Win32

· Standard Keyboard

· Floppy disk drive for install

· 5MB of free hard disk space

Recommended System

· A Pentium class processor

· 16 MB RAM

· Windows 95/98, Windows NT w/ SP5, or Widows 2000

· Standard Keyboard

· 10MB of free hard disk space

In Game Memory Map

Singular Data Structures (projected)

1 Room
598 bytes

1 Character
566 bytes

1 Clue

523 bytes

1 Current Death
1,144 bytes

Totaled Data Structures (projected)

65 Rooms
39,130 bytes

21 Characters
11,970 bytes

400 (verbal + tactile) Clues
212,400 bytes

75 Deaths
86,400 bytes

Game State (w/ a projected 500K executable file loaded)

Initial
1,939,852 bytes

Any other time (averaged)
555,647 bytes

Total In Game Memory (maximum)
2MB

Total In Game Memory (minimum)
548,148 bytes

On Disk Memory Map (projected)
Rooms Database
39,170 bytes

Character Database
12,010 bytes

Clues Database
210,840 bytes

Conversation Database
1,164,808 bytes

Temporary File
969,966 bytes

Save Files
556,671 bytes

Executable
512,000 bytes

Total On Disk (in game)
2,908,794 bytes (2.77 MB)

Note: These figures are projected numbers. They are subject to change (increase or decrease) at any time.

These figures were based on a program written by Jon Olson, Technical Director for Monkey18. It generates a projected size of the objects by filling the requested object with data and retrieving the size. In its current form, it is not dynamic in that the names of the data types are hard coded into it. If the data types change or the projected average size of a generic field used in any object changes the program needs a recompile.

It is possible to redo the program in a completely dynamic format. Where the program will be passed a header file and create projected and actual sizes of objects on the fly. This is a significant task and although it will be a useful tool to add to the DigiPen Collective it will only be done if extra time is available during the development of the game.

Function Descriptions

The code for the game will be broken down into a group of modules. These modules may be implemented as a set of functions. This section gives a general description of the functionality of each code module. Included with this section is a flow chart of the game. Each of these code modules will fit into one of the blocks on the flow chart. Note: The functions are denoted by following the name with a ().

List of Potential Functions:
Ask()

CharacterShuffle()

Compliment()

DisplayPlayerLocation()

EndTurn()

EraseGame()

EvidenceCollect()

EvidenceOrganize()

ExamineObject()

GameOver()

Greet()

HelpFile()

Insult()

InterpretAction()

InterpretTalk()

LoadGame()

NewGame()

NewTurn()

ParseText()

PrintOut()

Quit()

SacrificeTime()

SaveGame()

Show()

StoryIntroduction()

TitleScreen()

Ask()

Overview:

This function allows the user to get information about various game objects. A name is supplied, and a search is performed to tell which game object the user is referring to. On a multiple match, the first object is chosen.

Takes:

· A string

Invoked By:

· InterpretTalk()

Actions:

· Check evidence data to see if string matches something in the player’s evidence

· Check player.room.object data to see if string matches an object in the room

· Check room.name list to see if string matches a game room’s name

· Generate a string using the description property of whatever object was matched

· If no objects were matched generate a ‘I don’t know what you’re talking about’ response

Screen Output:

· none

Returns to:

· InterpretTalk()

Gives:

· String of what NPC would say

CharacterShuffle()

Overview:

This function randomizes the initial game state. It generates, in the current game state object, the mafia list; live character list; initial dynamic room map; randomizes initial whack-list for each character; and sets the pastMurder array to NULL.

Takes:

· pointer to current game state

· pointer to full character list

· pointer to full death list

Invoked By:

· NewGame()

Actions:

· read/write : current game state
(internal only, not data files)

· read/write : character data

(internal only, not data files)

· read : full death list

(in: current game state)

· read : map list

(in: current game state)

Screen Output:

· none

Returns to:

· NewGame()

Gives

· success/fail flags

· sets values in current game state

· sets values in character data

Pseudocode:

CharacterShuffle()

{

(randomizer is seeded by NewGame())

loop through all available characters randomizing their suspect lists;

for each value of NumberOfMurderers

{

 select a random character from pool;

 remove selected character from the available pool of charcters to choose a

 murderer from;

}

call StoryIntroduction();

return;

}

Compliment()

Overview:

This command is a brief compliment. This is to let the player positively interact with NPCs. It is a talk command. The results of this command increases the players trust index with the complimented character within a limit.

Takes:
· Character ID of the complimented

Invoked By:

· InterpretTalk(): compliment or compliment <character>

· InterpretAction() : compliment <character>

Actions:

· Access diaglogue data to generate a response

· Good response for compliment

· Update character info

Screen Output:

· Character response

Returns to:

· InterpretTalk()

· InterpretAction()

Gives:

· String of what NPC would say

DisplayPlayerLocation()

Overview:
At the onset of the game and after each move or look command the player’s location will have to be displayed. DisplayPlayerLocation() will be a function for displaying the player’s current location.

The function will be passed a direction. The function will check the current location to determine whether it is possible to move in that direction. If that direction is impassable the function will output to the screen text telling the player that direction is impassable. If the player can move in that direction, DisplayPlayerLocation() will display the description of the new location. The location will have linked to it the characters and clues that are currently in that location these will also be displayed.

After displaying the player’s current location the function will invoke the command prompt/command interpreter InterpretAction().
Takes:
· Current Room ID from Game State

· Direction to move from InterpretAction()

Invoked by:

· InterpretAction()

· Move or Look command

· Load()

· HelpFile()

· New Turn

· Story Introduction

Actions:

· Accesses and displays location and object information from the text database.

· Accesses and displays clue information from the text database.

· Accesses and displays character information from the text database.

· The clues and characters in a location are linked to the location structure.

Screen Output:

· Location Description

Returns to or followed by:

· InterpretAction()

Gives:

· New Room ID to Game State

EndTurn()
Overview:

This function describes the player moving to and arriving at the nightly village meeting.

Takes:

· No data

Follows:

· InterpretAction()

Actions:

· Accesses the text data

· prints description of player moving to and arriving at the village meeting.

Screen Output:

· The description of the player moving to and arriving at the village meeting.

Followed by:

· SacrificeTime()

Gives:

· No data

EraseGame()

Overview
From the load and save menus the player will have the option of deleting a saved game. This function will be called to handle the delete. It will use the remove function from stdio.h. After deleting the file it will return to the save game or load game menus.

Takes:
· Name of saved game stored in save slot

Invoked by:

· LoadGame() delete game option

· SaveGame() delete game option

Actions:
· Prompts user to confirm delete.

· Gets input for confirmation.

· Deletes given game file.

Screen Output:

· Prints “Are you sure you want to delete old game ?”

Returns to:

· Returns to the calling function either Save() or Load()

Gives

· Success/Failure

EvidenceCollect()
Overview

Evidence Collect requires few parameters; the name (or ID) of the item to be collected, and optionally the name of the person who it is assumed to incriminate. The function will be called by either InterpretTalk (in case you want to store a verbal clue) or ExamineObject (for all other clues).

It will use the name (or ID) and grab a pointer to the item and store it in a file. In the case of an item used to indicate a character that item will be stored in a file specifically for (or rather against) that particular individual.

Takes:

· A string containing the item name.

· Optionally a string containing the person’s name.

Invoked by:

· InterpretTalk()

· ExamineObject()

Actions:

· An if/else to separate between General Evidence and Evidence against. Each will contain a method to search for the data followed by code to save the data in the appropriate place.

· Prints out confirmation of information being stored.

Screen Output:
· For General Evidence “You put <evidence> into your general evidence log”

· For specific evidence against, “You put <evidence> into your evidence against <character>.”

Returns to:

· InterpretAction(), or

· InterpretTalk()

Gives:

· Success/failure

EvidenceOrganize()
Overview

The evidence management modules allow the player to organize and examine

the various clues they have obtained throughout the island. Evidence is

listed , a few items at a time, according to the current category. The

player can then move or examine individual items in evidence. Movement of

evidence can occur from character to character or to the general evidence

category.

Takes

· A value must be passed to indicate that a new list should be displayed or an item description should be displayed.

· A pointer to the ID of the current location in the list OR a pointer to the ID of the item that needs its description displayed.

Invoked By

· InterpretAction()

Actions

· Load evidence descriptions for the ClueID’s listed in the player data struct.

· Sort the evidence by category(General, Totok, Kaveri, etc.)

· Display the first n elements of evidence with the category specified by the arguments passed.

· Display a list of available commands to the user and prompt.

· Commands:

· N or NEXT will display the next n elements. Moves to next character if at end of current.

· P or PREV will display the previous n elements. Moves to previous character if at beginning of current.

· VIEW GENERAL will display the general evidence list.

· VIEW <CHARACTER> will display the evidence list pertaining to the character named.

· VIEW <EVIDENCE> will display the description text of an evidence item.

· PUT <EVIDENCE> IN EVIDENCE AGAINST <CHARACTER> moves the evidence item into the evidence against the character named.

· PUT <EVIDENCE> IN GENERAL moves the evidence item into general evidence.

· Commands are handled by the command parser.

Screen Output

· Display the first n elements of evidence with the category specified by the arguments passed.

· Display a list of available commands to the user and prompt.

Returns to:

· Interpret Action

Gives

· Nothing

ExamineObject()
Overview

The function’s sole duty will be to search for the item in question and print out its description. It will return a BOOL value indicating success or failure.

Takes:

· A string containing the name (or ID) of the item to be found.

Invoked By:

· InterpretAction()

Actions

· It will search for the item in the binary tree then pull out the description data and print it out.

Screen Output:

· It will print out the description data.

Returns to:

· InterpretAction()

Gives:

A simple Success or Failure report.

GameOver()

Overview:

Displays the sequence of events that occur if the player wins, or loses, the game.

Takes:

· A Boolean data type that is either 0 (lose game) or 1 (win game)

Invoked by:

· SacrificeTime()

Actions:

If Wingame then:

· Access Dynamic Memory to determine which characters survived

· Access text, dialogue and evidence data to piece together an ending sequence.

· Print sequence of events to screen

If Losegame then:

· Access DynamicMemory to determine which Mafia characters remain

· Piece together the Bloody Horrible Death of the Player

· Print sequence of events to screen

Screen Output:

Wingame:

· Describes the victory jubilations: the setting is always the same, but each character has his or her own sequence of events that occur only if he or she survives. Also, a few of the true clues the player used during the game will be incorporated into the ending.

 LoseGame:

· Identical to Wingame, except each of the remaining Mafia characters have their own sequence of events that are pieced together into the prelude to the Bloody Horrible Death of the Player.

Followed by:

· TitleScreen()

Gives:

· No data

Greet()

Overview:

This command is a brief greeting. This is to let the player quickly greet NPCs without going into conversation mode. It is essentially a talk command that happens at the general command prompt. The results of this command increase the players trust index with the greeted character within a limit.

Takes:
· Character ID of the greeted character

Invoked By:

· InterpretAction() : greet <character>

Actions:

· Access dialogue data to generate a response

· NPC returns greeting

· Update character info

Screen Output:

· Character response

Returns to:
· InterpretAction()

Gives:

· String of what NPC would say

HelpFile()
Overview

The help system is not viewed by the player within the normal game

interface. It displays a table of contents and instructions on how to

navigate. There is no command line here. None of the users input will be

echoed to the screen. When the user is finished the last area on Tep will

be reloaded.

Takes:

Nothing

Invoked By:

InterpretAction()

Actions:

· Load the help system data into a linked list (TepDataString).

· Display the opening screen – the table of contents for the help file.

· Display a list of available commands to the user and prompt.

· Commands:

· <CHAPTER NUMBER>

· N will turn to the next page.

· P will turn to the previous page.

· C will turn to the contents page.

· E will exit the help system. All help information in memory will be freed. Load the player’s current location.

Screen Output

· Display the opening screen – the table of contents for the help file.

· Display a list of available commands to the user and prompt.

· Display help text

Invokes:
· DisplayPlayerLocation()

Gives:

· Success/Fail

Insult()

Overview:

This command is a brief insult. This is to let the player vent on NPCs. It is essentially a talk command that can happen either in conversation mode or at the general command prompt. The results of this command decrease the players trust index with the insulted character.

Takes:
· Character ID of the insulted

Invoked By:

· InterpretTalk(): insult or insult <character>

· InterpretAction() : insult <character>

Actions:

· Access diaglogue data to generate a response

· Bad response for insult

· Update character info

Screen Output:

· Character response

Returns to:

· InterpretTalk()

· InterpretAction()

Gives:

· String of what NPC would say

InterpretAction()
Overview:

The InterpretAction() function will display a command prompt, that includes the current game time (which is an indicator of remaining moves in a game turn) and take text input from the command line. The text input from the command line will be parsed using a separate text parsing function. InterpretAction() will take the parsed text and compare it to a list of commands. If a text sequence matches a command signature in the command list (e.g. Move <North>) the command interpreter will call the appropriate command handler function to deal with that command. Different commands will take different amounts of time, these will be used when a command is called to update the current game time.

Takes:
· Keyboard input

Follows:

· First instance of DisplayPlayerLocation()

Actions:

· Displays current game time

· Displays command prompt

· Gets user input

· Calls text parser

· Compares parsed text message to command list

· Calls appropriate command handler function

· Adjusts game time

Screen Output:

· Current game time

· Command Prompt

Invokes:

· Command handlers

Gives:

· Commands and parameters to command handlers

· Input string to text parser

InterpretTalk()
Overview:

Once activated, InterpretTalk takes over the user input until the user has finished with it. The user types in whatever they wish and the input is then broken up and checked to see if any speech commands were typed in. After each input is typed the NPC being talked to has a response. If the input by the user doesn’t activate any of the commands, the NPC says something along the lines of ‘I don’t understand’.

 Commands are:

 Ask about <object>

 Show <evidence> against <character>

 Compliment <character>

 Insult <character>

Takes:

· Nothing

Invoked By:

· InterpretAction()

Actions:

· Loop

· Get user input

· Call Text Parser

· If command is activated

· Do command

· Print result of command as NPC talking

· Else

· Do generic failure response or give verbal clue

· When user signifies they’re done, break loop

Screen Output:

· Prints prompt ‘Talking to <character> Dialogue’

· Prints NPC response to what player says each input

Invokes:

· Talk sub-commands depending on user input

Returns to:

· InterpretAction()

LoadGame()
Overview
The Load() function will open a saved game file from disk and read the data. This data will be used to initialize the game state, update the player information, update character information and other initialization that may be required.

Takes
· Name of a saved game

· Input from keyboard

Invoked by

· The menu from the title screen

· InterpretAction() while in game

Actions

· Display load menu

· Open saved game file

· Read saved game file

· Initialize the game state, player information, character information with saved data

Screen Output
· A menu with the save game slots and names of saved games

· A confirmation prompt after the player chooses a saved game

Invokes
· DisplayPlayerLocation()

· EraseGame()

Gives

· Saved data to re-initialize the game state and update player and character information

NewGame()
Overview

This function will start a new game by seeding the randomizer, determining the servants of Rametep, setting the initial character information, initializing variables, asking the player to enter their name, then setting the player information and finally invoking the StoryIntroduction() function.

Takes
· player name from keyboard input

Invoked by

· TitleScreen() “New Game” options

Actions

· Seed randomizer

· Determine servants of Rametep

· Set character information

· Initialize variables

· Call StoryIntroduction()

Screen Output:

· Asks player to enter their name

Followed by:

· StoryIntroduction() function

Invokes:

· CharacterShuffle()

Gives:
· Gives the game state data structure the intial game state

NewTurn()
Overview

This function controls most of the in-game game loop. It sets/updates many variables for each turn, including, but not limited to, initial state of turnsLeft, past death list, and mafia list.

Takes

· pointer to current game state

Follows:

· StoryIntroduction()

· SacrificeTime()

Actions:

· read/write : current game state
(internal only, not data files)

· read/write : live list

(in: current game state)

· read/write : past death list

(in: current game state)

· read/write : death list

(in: current game state)

· read/write : dyn map list

(in: current game state)

· read/write : current murder

(in: current game state)

· read : full map list

(in: current game state)

Screen Output

· new day description, which includes any, if possible, news of the new death or lack thereof (win state.)

Invokes

· StoryIntroduction(pointer to current game state (?))

Gives

· success/fail flags

· sets values in current game state

Pseudocode

NewTurn()

{

(randomizer is seeded by NewGame())

loop until randomly find a new, unused death;

randomly pick a live character to be killed;

randomize the number of clues (x) used for death;

using randoms, scatter x number of clues in their various locations (chacters, locations, on perp, etc). Making sure that they do not double up.

display new day description;

display any murder information possible if death.location coinsides with a charcter.location;

 begin main loop

 {

 if (InterpretAction() returns okay)

 DisplayPlayerLocation()

 else

 process failure;

 }

 return any flags that need returning;

}

ParseText()
Overview:

ParseText() will be a function to break apart an input string to tokens for the command interpreters. This function may make use of the C run time library function strtok or may be custom made. The parsed text will be matched to a command signature and a message will be generated and returned to the appropriate command handler.

Takes:
· A string of input

Invoked by:
· Command interpreters

· InterpretAction()

· InterpretTalk()

Actions:

· Breaks text into string tokens

· Matches tokens to a command

· Generate a message with the command and any necessary TepID’s

Screen Output:
· None

Returns to:
· Calling command interpreter

Gives:
· A message structure.

PrintOut()
Overview

PrintOut() will be called by lots of functions to print text to the screen. Functions that require special formatting, like EvidenceOrganize() will not use PrintOut() to accomplish said special formatting.

Takes:
First Argument: PAUSE (#defined in the Tep Header file as 666) or NOPAUSE (#defined in the Tep Header file as 665). If PAUSE is passed, PrintOut() will pause the text output just before it returns, even if a full screen has not been printed. In this case, PrintOut() will return once the user hits the “any key”. NOPAUSE has no effect.

Second Argument: An integer that defines how many subsequent arguments are to be passed. This integer will henceforth be referred to as n_values.

Subsequent Arguments: A number of integers (TepIDs) equal to n_values that are associated with chunks of text in the universal text database which are to be printed, in the order that they should be printed.

Invoked By:

Anything that needs to speak to the player through text (damn near everything).

Actions:

· PrintOut() indexes into the universal text database and finds the chunks of text associated (be they location descriptions, character dialogue, event descriptions, etc.) with the integers (TepIDs) it received as arguments. It then prints the text to the screen verbatim (one argument after another); the only processing it does on the text is filtering out the ‘/p’ symbol and replacing that symbol with a newline followed by a tab. PrintOut() ensures that words near the right side of the screen are not “cut in half” at the end of the line, but instead are newlined to the next line of text. PrintOut() also keeps track of the number of lines of text being printed in a single call; once one screenful of text has been displayed, PrintOut() pauses the text output until the user hits the “any key”, whereupon PrintOut() resumes printing the next screen of text, etc. until all of its arguments have been satisfied, whereupon PrintOut() returns.

· PrintOut() performs special operations when it encounters formatting characters such as ‘#’ (new paragraph), ‘*’ (substitute clue name), and ‘@’ (substitute character name).

Screen Output

· The text specified by the TepID arguments passed, in the order they were passed, unfiltered save for the line formatting (defined as 76 characters max per line) and pausing for each screen of text (defined as 22 lines == a pause).

Invokes:
· Nothing

Gives:

· Success/failure. (1 or 0)

Quit()
Overview:
When the player chooses to quit the game this function will prompt the player to make sure they want to quit and that unsaved information will be lost. If the player chooses to go ahead and quit then this will do any necessary cleaning up.

Takes:

· Keyboard input for quit confirmation

Invoked by:
· InterpretAction(): quit

· TitleScreen()

Actions:
· Prompts the player to make sure they want to quit

· Performs any necessary clean up

· Exits the program

Returns to:

· InterpretAction() or TitleScreen() if the player chooses not to quit

Gives:

· Success/Failure for clean up

SacrificeTime()

Overview:

This function describes to the player what occurs during the nightly village meeting. It also determines which villager is to be sacrificed and removes that villager from the game. If there are only Good villagers or only Mafia villagers remaining, go to the game victory or the game over sequence.

Takes:

· No data

Follows:

· EndTurn()

Actions:

· Access the suspicion hierarchies of each villager

· tally up the top suspicion of each villager

· remove the villager with the most votes from Dynamic Memory

· Update the suspicion hierarchies to account for the loss of this villager

· Print the flow of events to the screen

· Test to determine if the game should end, and if so, if it ends in victory or defeat.

Screen Output:

· Description of the Temple of Tepititan, with all remaining villagers present

· Villager speeches on who they are voting to sacrifice and for what reason.

· Sheroesha pronounces the sacrifice, who reacts in some way (usually raw terror)

· Villager reactions to sacrifice

· End of day text as the player retires for the night at the Temple of Tepititan.

Followed by:

· NewTurn() or GameOver()

Gives:

· Returns a value to invoke either NewTurn() or GameOver()

SaveGame()

Overview:
During the game the player will be allowed to save. This function will be invoked during the game when the command interpreter receives a “save” command from the player. This will display a save menu and allow the player to delete a game by calling the EraseGame() function. There will be 10 save slots. After saving the player will be allowed to continue the game or quit.

Takes:
· Name of a game to save

· Input from keyboard

Invoked by:

· InterpretAction() while in game

Actions:

· Display save menu

· Create a saved game file

· Write to a saved game file

· Save the game state, player information, character information

Screen Output
· A menu with the save game slots and names of saved games

· A confirmation prompt after the player chooses a saved game

Invokes
· DisplayPlayerLocation()

· Quit()

· EraseGame()

Gives

· Success/Fail

Show()
Overview:

This command is for the user to try and sway one NPC’s opinion of another. You present evidence which points towards someone, and the person you are talking to either believes it or doesn’t believe it. This function has to access the player’s inventory of what evidence has been gathered so far.

Show <evidence> against <character>

‘You show Totok the evidence you’ve collected against Imala.’

‘Totok says, “She did it! I believe you!”’

NOTE: mafia may give a positive response, even when their hit list (suspicion list) is not affected.

Takes:
· Nothing

Invoked By:

· InterpretTalk()

Actions:

· Checks the favor the player has with the current character in dialogue

· If favor is high, the character is more likely to believe you

· Checks the evidence’s murderer indicator

· If the character is not mafia, and believes

· Step the suspected murderer up on their suspicion list

· Generate positive response

· If the character is mafia, and doesn’t believe

· Step the suspected murderer down on their hit list

· Generate negative response

· If the character is mafia, and murder != suspected murderer

· Generate positive response

· If the character is mafia, and murder == suspected murderer

· Generate negative response

Screen Output:

· None

Returns to:

· InterpretTalk()

Gives:

· A string response of whether or not the NPC believed your pitch

StoryIntroduction()
Overview:

This function draws the player into the game by printing the immediate back-story and the first event of the game onscreen.

Takes:

· No data

Invoked by:

· CharacterShuffle()

Actions:

· Prints the stock back-story description.

· Accesses Dynamic Memory to determine which villager initially approaches the player and the reaction of the character to the player’s presence (note that whether this villager is Mafia or not does not change their reaction to the player).

Screen Output:

· Describes the catastrophic shipwreck

· Describes one of the villagers approaching the player and begging for assistance.

Followed by:

· DisplayPlayerLocation()

Gives:

· No data.

TitleScreen()

Overview:

After initialization the program will enter its main title screen. The title screen will display the game name “The Emissary of Tep”, the development company “Monkey18 Productions” and three menu options, “(N)ew Game, (L)oad Game or (Q)uit”. The user will be able to enter the single letter in parenthesis for each option to choose that option.

Takes:
· Keyboard input

Invoked by:
· Main Game Loop

Actions:
· Displays game name

· Displays company name

· Displays Menu Options

· New Game

· Load Game

· Quit

Screen Output:
· Game name: “The Emissary of Tep”

· Company name: “A Monkey18 Production”

· Menu Options: “(N)ew Game, (L)oad Game or (Q)uit

Invokes:

· N/A

Followed by:
· NewGame function

· LoadGame function

· Quit function

Gives:
· Menu Choice

Monkey18 Style Guide

Introduction

This style guide is used in order to keep code clear and understandable between all members of the team during coding of Monkey18 software productions.

Commenting and Comment Style

The standard C comment style will be used for all commenting. That is of the form:

/* Comments */

No C++ style (//)commenting will be allowed.

Each section of code that serves a particular function should have a comment at the start of the section. For example a loop that is used to initialize an array should have a comment before the start of the loop that says /* Loop to initialize array */.

All variables should have a comment stating their purpose when they are defined.

For Example:

int
iCount;
/* Used to count points */

int
n;

/* Generic index used in loops */

char
*szSentence;
/* Input String */

At the end of a closed brace there should be a comment stating what the brace closed off.

For Example:

while(!iFound)

{

for(j = 0; j <= 10; j++)

{

/* Code */

if(iIFoundIt)

{

iFound = 1;

} /*end if*/

} /* end for loop */

} /* end while loop */

File Headers

File headers will have these headers in this order:

· Program ID:

· Programmer Name:

· Date Created:

· Program Updated by:
<programmer>
Date of Update: mm/dd/yyyy

· Program Description:

· Dependencies:

· Input Files:

· Output Files:

The following is an example and illustrates the style of comments that should be used:

/* Program ID: Text Parser

 * Programmer Name: Totok Smith

 * Date Created: October 2, 2000

 * Program Updated by:
Joe Baca
Date of Update: 11 / 02 / 2000

 *

Pam Wilson
Date of Update: 11 / 30 / 2000

 * Program Description:
This program takes a line of input from standard input,

 *

separates the text into string tokens and stores those tokens

 *

in a file.

 * Dependencies:
 <stdio.h>, <stdlib.h>, “objectStructures.h”

 * Input Files:
command.dat

 * Output Files: parsedText.txt

 */

Blocks, Indents and Spacing
Each statement within a block of code should be indented 4 spaces within their braces. Visual C++ does this for you but you must set your tabs to insert 4 spaces instead of tab characters otherwise people using other programs will have difficulties reading your code.

All conditional statements will end in a block of statements even if there is only one statement following it. The braces will start on a new line and will be the only symbol on that line to clearly identify where each block starts and ends.

For Example:

if(TRUE)

{

return 0;

} /*end if */

Variable Naming Conventions

All variables will begin with a lowercase letter and each subsequent word within the variable name will begin with a uppercase letter.

For Example:

int
iThisIsMyVariable;

All variables will be prefixed using a system based on Hungarian notation. This is given as follows:

	Prefix
	Data Type
	Example

	c
	char
	cMyChar

	by
	BYTE (unsigned char)
	byMyByte

	n
	short
	nMyShort

	i
	int
	iMyInt

	x, y
	int used as coordinate
	xCoordinate, yCoordinate

	cx, cy
	int used as x or y length; cstands for count
	cxXLength, cyYLength

	b or f
	BOOL (int); f stands for “flag”
	bTest

	w
	WORD (unsigned short)
	wMyShorts

	l
	LONG (long)
	lMyLong

	dw
	DWORD (unsigned long)
	dwGetThePicture

	fn
	function
	fnParseText

	s
	string
	sName

	sz
	zero terminated string
	szLegalCString

	h
	handle
	hFileHandle

	p
	pointer
	pPointerToBob

	fl
	float
	flExactLength

Variables should be meaningful within the context of the program.

For example:

int iN;

/* Not acceptable */

int iNumberOfPeople;

/* Good */

Variables used as generic counters must be commented when defined.

 For example:

int n;

/* This is a generic counter */

Variables and pointers should be set to a meaningful value or zero as soon after declaration as possible.

All variables should have a comment giving a brief description of their use after their definition.

Constants
All constants used within a program will have a symbolic alias that is in all capital letters defined at the beginning of the file using #define.

For example:

#define NPC_NUMBER 20

FUNCTIONS

Prior to function definitions, functions will be commented using the following format:

· FUNCTION:

· PARAMETERS:

· RETURN VALUE:

· SIDE EFFECTS:

· DESCRIPTION:

For Example:

/* FUNCTION:
fnCheckBook

 * PARAMETERS:
iCheckNumber,
Used to determine check number

 *

&szText,
Used to determine payee

 * RETURN VALUE: flBalance

Balance in the Account

 * SIDE EFFECTS:
Changes the name given in szText

 * DESCRIPTION:
This function takes a check and calculates the new balance, fills in

 *

the name of the payee and returns the new balance.

 */

Data Structures and Typedefs

Data structures and typedefs should be preceded by a brief description such as in the following example:

/* DATA STRUCT ************************************
 A struct for storage of data. This structure
 is to be used primarily in file database data
 strings.
**/
typedef struct _MK18_TepDataString
{
 TepID id;
 pChar data;
} TepDataString;

Team Member Goals
The purpose of this section is to break down all the assignments for each team member.

Here is the list of weeks and the corresponding dates:

	Week 1
	January 9 – 15, 2001

	Week 2
	January 16 – 22, 2001

	Week 3
	January 23 – 29, 2001

	Week 4
	January 30 – February 5, 2001

	Week 5
	February 6 – 12, 2001

	Week 6
	February 13 – 19, 2001

	Week 7
	February 20 – 26, 2001

	Week 8
	February 27 – March 5, 2001

	Week 9
	March 6 – March 12, 2001

	Week 10
	March 13 – March 19, 2001

	Week 11
	March 20 – March 26, 2001

	Week 12
	March 27 – April 2, 2001

	Week 13
	April 3 – 9, 2001

	Week 14
	April 10 – 16, 2001

Schedule of Tasks by Week

Week 1:
Assign hats

Revise the GDD

Tool development begins

Begin additional content creation (ends in week 6)

Week 2:
Final GDD DUE

Revise the TDD

Begin code implementation

Week 3:
Final TDD DUE

Week 4:
Draft of Marketing plan

Week 5:
Finalize/debug prototyped code

Content refinement

Begin marketing material creation

Week 6:
First Deliverable Prototype DUE

Prepare for focus groups

Week 7:
Internal focus group testing

Week 8:
Alpha Deliverable DUE

Present Alpha Deliverable

Begin Instruction Manual

Week 9:
Formal focus groups

Week 10:
Beta Deliverable DUE

Present Beta Deliverable

Week 11:
Alpha marketing materials DUE

Week 12-13:
Finalize game

Prepare presentation of final game

Week 14:
Present final game to panel

Class:
Game 150

Team:
Monkey18 Productions

Game:
The Emissary of Tep

Team member:
Matt Phillips

Role within team:
Producer

Total allotted time: 12 weeks (entire semester)

1. Additional Game Content

5 weeks (Total)

2. Engine Coding

4 weeks (Total)

2.1. NewGame()

1 week

2.2. CharacterShuffle()

1 week

2.3. EvidenceOrganize()

1-2 weeks

2.4. Ask()

1 week

3. Marketing Campaign Materials

3 weeks (Total)

4. Packaging / Box Art

4 weeks (Total)

5. Debugging and Content Refinement

7 weeks (Total)

*Job times do contain a lot of overlap. See the Project Timeline Appendix for scheduling.

Class:
Game 150

Team:
Monkey18 Productions

Game:
The Emissary of Tep

Team member:
Dan Davis

Role within team:
Designer

Total allotted time: 12 weeks (entire semester)

1. Additional Game Content

5 weeks (Total)

2. Content Editing

9 weeks (Total)

3. Engine Coding

8 weeks (Total)

3.1. InterpretAction()

2 weeks

3.2. EndTurn()

1 week

3.3. Compliment()

1 week

3.4. EraseGame()

1 week

3.5. Quit()

1 week

3.6. HelpFile()

2 weeks

4. Bullet Points

3 weeks (Total)

5. Debugging and Content Refinement

7 weeks (Total)

*Job times do contain a lot of overlap. See the Project Timeline Appendix for scheduling.

Class:
Game 150

Team:
Monkey18 Productions

Game:
The Emissary of Tep

Team member:
Jon Olson

Role within team:
Technical Director

Total allotted time: 12 weeks (entire semester)

1. Additional Game Content

5 weeks (Total)

2. Database Tool

3 weeks (Total)

3. Engine Coding

3 weeks (Total)

3.1. ListFind()

1 week

3.2. GameOver()

1 week

3.3. NewTurn()

1 week

3.4. SaveGame()

1 week

4. Debugging and Content Refinement

7 weeks (Total)

*Job times do contain a lot of overlap. See the Project Timeline Appendix for scheduling.

Class:
Game 150

Team:
Monkey18 Productions

Game:
The Emissary of Tep

Team member:
Nathan Frost

Role within team:
Product Manager

Total allotted time: 13 weeks (entire semester)

1. Additional Game Content

5 weeks (Total)

2. Marketing Plan Draft

1 weeks (Total)

3. Engine Coding

4 weeks (Total)

3.1. PrintOut()

1 week

3.2. InterpretTalk()

2 weeks

3.3. LoadGame()

1 week

4. Focus Group Information

1 weeks (Total)

5. Packaging / Box Art

4 weeks (Total)

6. Instruction Booklet

3 weeks (Total)

7. Debugging and Content Refinement

7 weeks (Total)

8. Final Presentation

2 weeks (Total)

*Job times do contain a lot of overlap. See the Project Timeline Appendix for scheduling.

Class:
Game 150

Team:
Monkey18 Productions

Game:
The Emissary of Tep

Team member:
Nate Cleveland

Role within team:
Content Editor

Total allotted time: 12 weeks (entire semester)

1. Additional Game Content

5 weeks (Total)

1.1. Administering Content Creation

5 weeks

2. Engine Coding

4 weeks (Total)

2.1. ParseText()

1 week

2.2. ExamineObject()

1 week

2.3. Greet()

1 week

2.4. StoryIntroduction()

1 week

2.5. Insult()

1 week

2.6. TitleScreen()

1 week

3. Debugging and Content Refinement

7 weeks (Total)

*Job times do contain a lot of overlap. See the Project Timeline Appendix for scheduling.

Class:
Game 150

Team:
Monkey18 Productions

Game:
The Emissary of Tep

Team member:
John Corpening

Role within team:
Lead Tester

Total allotted time: 12 weeks (entire semester)

1. Additional Game Content

5 weeks (Total)

2. Engine Coding

4 weeks (Total)

2.1. DisplayPlayerLocation()

1 week

2.2. EvidenceCollect()

2 weeks

2.3. SacrificeTime()

1 week

2.4. Show()

1 week

3. Game Testing / Bug Reporting

5 weeks (Total)

4. Instruction Booklet

3 weeks (Total)

5. Debugging and Content Refinement

7 weeks (Total)

*Job times do contain a lot of overlap. See the Project Timeline Appendix for scheduling.

Appendix:

Microsoft Project Planning Timeline

Appendix B:

TepEdit TDD

Game Flow Chart

Initialization

Title Screen

Quit to OS

Checking of the Statues

The Sacrifice of the Day

Speeches/Vote Casting

New Game

Character Shuffle

Story Introduction

Victory Speeches

Commence New Turn

Defeat; Player Dies

Load Saved Game

Display Player Location

Interpret Commands

End Turn

Brief Character Interaction

Evidence Collect/Organize

Help File

Conversation Mode

Save/Quit/Load Game

Examine Objects

Evidence Collection

Show Evidence to Character

Compliment or Insult Character

Ask Character About Subjects

PAGE
75

